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LElTER TO THE EDITOR 

The fractal dimension of cluster perimeters generated by a 
kinetic walk 

A Margolina 
E1 duPont de Nemours and Company, Inc., Central Research and Development Depart- 
ment, Experimental Station, Wilmington, Delaware 19898, USA 

Received 20 May 1985 

Abstract. The fractal dimension d ,  of cluster perimeters generated by a recently proposed 
‘butterfly’ growth walk is considered. In the long-range limit of the walk on a percolation 
cluster, d ,  appears to be equal to the fractal dimension of the singly connected bonds: 
d ,  = 1/ v. The new relation for chemical dimension d, is proposed: d ,  = d , / ( d , -  d , ) .  In 
the short-range limit the ‘butterfly’ walk on a Euclidean lattice appears to be in the same 
universality class as a random walk. The dynamic aspect of the growth walk is discussed 
and the continuously tunable spectral dimension is obtained. Both short- and long-range 
limits of this diffusion process are different from a random diffusion on percolation. 

The structure of clusters generated by kinetic walks is currently a subject of intensive 
study (see, for example, Kremer and Lyklema 1984, Majid et a1 1984, Peliti 1984, Ziff 
et a1 1984). The main point of interest is the fractal dimensionality df of the trace left 
by a walk with a one-step probability which depends on the past history. A new type 
of kinetic walk was introduced recently (Bunde et a1 1984) which visits only the 
perimeter sites of the cluster generated by the walk. These perimeter sites through 
which the cluster continues growing were termed growth sites (Leyvraz and Stanley 
1983). At each step of the walk the choice of the next growth site to be visited is 
performed according to the probability P( r )  - l / r ”  that depends on the distance r 
from the current visited site. The parameter &(positive or negative) governs the effective 
attraction or repulsion between the growth sites. Thus, the ‘butterfly’ walk makes steps 
of varying length, limited by the size of a growing cluster. The main property of interest 
for this type of walk is not the fractal dimensionality dr of the grown cluster which 
(except for the case of a + --CO on a Euclidean lattice) coincides with the fractal 
dimensionality of the substrate. Rather, the fractal dimensionality d ,  of the growth 
sites forming the growth perimeter of the cluster is of interest. The number of growth 
sites G scales with the average cluster radius R as 

G - R ~ G .  (1) 

The ‘butterfly’ walk was studied by Bunde et a1 (1984) on the percolation cluster in 
d = 2 at the threshold pc .  An interesting crossover behaviour was found for dG, namely 

0.76 * 0.03 a 2 
1.04*0.04 a 3 8 .  

These two limits correspond, respectively, to the long-range and the short-range 
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‘butterfly’ walk. The long-range walk includes the case of a = 0 which corresponds to 
the Eden model on percolation clusters (see also Family and Vicsek 1985). 

In this letter the crossover phenomena occurring in the ‘butterfly’ model are studied 
further. A conjecture is proposed identifying d G / d f  for the long-range limit with the 
known percolation exponent U. The ‘butterfly’ walk is performed on a Euclidean lattice 
( p  = 1) and it is found that in the short-range limit G - s/ln s, corresponding to the 
growth perimeter of a random walk. I also introduce the dynamic aspect to the 
‘butterfly’ walk and find the crossover in the spectral dimension as well. 

Let us look at the way the large cluster perimeter P scales with the number of 
cluster sites s at the percolation threshold. The cluster perimeter P of the finished 
cluster is the number of blocked neighbours to cluster sites. Note that the growth 
perimeter G is defined for the cluster which is still growing and, therefore, is equal to 
the number of all nearest neighbours to cluster sites minus blocked sites. It is known 
(Stauffer 1979) that 

+As“ P = s -  1 - P c  

P C  

where U = 1/ vdf and v is a correlation length exponent; A is a constant. The statistical 
weights of both the finished clusters and the clusters which are still growing are 
proportional to 

C sn, - s2-‘ 
S 

where n, is a number of s-site clusters per site and T is a percolation exponent; T = 2.055 
in d = 2 ) .  It is natural to assume, therefore, that (2) represents the scaling form for 
perimeters of very large growing clusters as well. One can also perceive that such 
correspondence should hold only for the long-range limit of the ‘butterfly’ walk. This 
can be seen most clearly in the case of CY = O  when the growth sites are chosen at 
random, closely resembling the Leath (1976) method of cluster growth which results 
in (2). Another comparison can be made with the growth variation ofthe Alexandrowicz 
(1980) method leading to the same long-range value of d, as a ‘butterfly’ (Family and 
Vicsek 1985). On the other hand, the short-range limit leads to a different growth 
pattern where the growth sites chosen tend to be close to each other and, consequently, 
the growth perimeter scales in a different way. The first term in (2) can be easily 
identified with the number of blocked sites in the growing cluster of size s. Therefore, 
for a large enough growing cluster the number of growth sites in a long-range limit 
should be proportional to the ‘excess’ perimeter 

(3) G - s“- R I / ” .  

Comparing ( 1 )  and (3) one gets 

dG = I /  V .  (4) 

Numerically, this is in a very good agreement with the long-range limit value for d,  
found by Bunde et a1 (1984) since U = $ and dG =: for d = 2. 

The simple argument presented here gives the same value for dG in the long-range 
limit as does the argument given by Bunde et a1 (1984), but it is more general. It 
should apply in all dimensions. It certainly holds for the Cayley tree where d , / d f  = f 
(Leyvraz and Stanley 1983) and U=;. There appears to be no difference between the 
long- and short-range limit ‘butterfly’ and the ‘ant’ for the Cayley tree. Preliminary 



letter to the Editor L653 

results for d = 3 (simple cubic lattice) also seem to agree with the prediction do/  d f  = U --. 
0.45. 

There is another meaning to the result do = 1 /  v. The fractal dimension d o  of 
growth sites G in the long-range limit appears to be the same as the fractal dimension 
of singly connected bonds L (Coniglio 1982). This might lead to the following scaling 
behaviour of the suitably averaged growth perimeter below the percolation threshold 

G - L -  1 p -pel-’  (5) 

which is currently being checked numerically. 
Another way to interpret the long-range limit was proposed by Leyvraz (1984). 

Suppose that the loops can be neglected. Then the growth perimeter G is a fractal 
cut in the ‘chemical distance space’ (Havlin 1984) 

(6) G- / d , - 1  - S ( d , - l ) l d ,  

Here I stands for the ‘chemical length’ (the minimum cluster path between two points) 
and dl  is the ‘chemical’ fractal dimension defined by s - I d i .  Now, (6) combined with 
( 3 )  leads to the following scaling relation 

connecting the chemical dimension df  to the fractal dimension of the percolation cluster 
df and the fractal dimension of growth sites do = 1/ v. This relation was indirectly 
predicted by Havlin and Nossal (1984) based on their numerical observation. Note 
that since dl  = d f / d m i ,  where dmin is the fractal dimension of the minimum path, one 
also gets 

dmin = d f  - dG (8) 
Numerically, this leads in d = 2 to df  =91/55 = 1.65 and dmin = 55148- 1.15 (but see 
Grassberger 1985 for a considerably larger numerical value of d f ) .  For d = 3 one gets 
df  = 1.82 and dmin = 1.37. We see that the fractal dimension of the growth perimeter 
dG is an important quantity and might reduce the number of ‘independent’ fractal 
dimensions. 

The ‘butterfly’ walk on the Euclidean lattice ( p  = 1 )  is of major interest now since 
it gives an opportunity to study the crossover in dG without additional complications: 
the number of growth sites G is equal to cluster perimeter for p = 1 .  The case of a = 0 
reduces to the Eden model with dc = 1 (Peters et a1 1979). Another simple case is 
a = --CO: the ‘butterfly’ chooses the site which is at maximal distance from the current 
site. The resulting cluster is a straight line: d f =  1 a i d  dG = 1 .  For intermediate values 
of a, I observe elongated clusters (see figure 1)  which seem to represent transient 
behaviour from do/  d f  = 4 (Eden model) to d G /  d f  = 1 ( a  = --CO). The effective value of 
d G / d f  for a = 16, for example, is about 0.6. 

Much more interesting is the short-range limit at p = 1 .  Let us look in more detail 
at the short-range ‘butterfly’ behaviour. The value of G does not change for a > 16. 
We are dealing here with a well defined space-filling walk (df=2) .  Namely, the walk 
goes to the nearest neighbouring sites, except when it falls into traps (all nearest 
neighbours are occupied). In this case, the ‘butterfly’ chooses the nearest perimeter 
site. Thus, the short-range ‘butterfly’ does not avoid traps as does the infinitely growing 
SAW (Kremer and Lyklema 1984) and tries to avoid flying over visited sites more 
efficiently than the ‘true’ SAW (Amit et a1 1983). As a result it forms compact clusters 
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with the growth perimeter: G - (see figure 2).  However, the apparent exponent 
0.85 can be interpreted in a different way. Namely, a fit G - s/ln s is of roughly the 
same numerical quality. Note that for a random walk in d = 2 one finds that s - N/ln N 
and, accordingly, G - s/ln s (Rammal and Toulouse 1983). Thus, I find that the growth 
perimeter of the short-range 'butterfly' walk behaves as the one for a random walk. 
This, however, is not the case for a walk on a percolation cluster where the random 
walk gives do --. 0.93 (Stanley et a1 1984) and the short-range 'butterfly' walk, dG = 1. 
This discrepancy is very intriguing and yet unexplained. One is tempted to summarise 
the numerical and scaling results by suggesting that for d = 2 

1 a < 2  
p = l  

?a> 16 
dG = ( 2  

a < 2  3 

dG={' P = Pc. 
1.04*0.04 ?a > 16 

(9) 

I conclude with a discussion of the dynamic aspect of the 'butterfly' walk. The 
dimension d ,  of this walk (where (time)= (distance)d-) is identical to df by construc- 
tion: there is no revisiting of the sites. This implies a rescaling of the time for the real 
diffusion process since we only increase time t by 1 when the cluster size s grows by 
1, purging the time of revisiting. Thus, the 'butterfly' moves in an artificial time t = s. 
We can, however, rescale the time back to normal 

(10) s - t d ' / d W  G - fdddw. 

It is as if the random walk proceeds normally until it meets a growth site. At this 
moment decision to occupy it or not is made according to a 'butterfly' probability 
P (  r )  - 1/ re.  If the growth site is not occupied, the revisiting continues until the next 
growth site. I suggest that this type of walk is called a growth-limited diffusion process. 
To model the diffusion successfully one should also preserve the time correlations 
between the changes AG in the number of growth sites inherent in the diffusion process. 
This is very hard to do since not much is known about these correlations (Aharony et 
al 1985). I suggest a simple way of introducing the dynamic aspect into the 'butterfly' 
walk. Since the choice of the next visited growth site is already made in the framework 
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Figure 2. The cluster of 1500 sites formed by a a = +32 ‘butterfly’ on a Euclidean lattice. 
Only the growth sites, *, are shown. 

of the model, let us assume that the probability of access to the growth site is 
proportional to the growth perimeter G (Rammal and Toulose 1983) 

ds G 
dr S ’  
--- 

This equation seems to work for the ‘ant in the labyrinth’ (Leyvraz and Stanley 1983). 
It should also be fine for the a = 0 ‘butterfly’ which choses growth sites at random. If 
one assumes it to hold for all a one easily gets combining ( l l ) ,  (10) and (2) (Stanley 
1984) 

This immediately leads, using (9) and d f  = 91/48, to an interesting crossover for d = 2 
in a spectral dimension d,  = 2 d f / d ,  = 1 + d G / d ,  from d,  = 91/73 = 1.25 (long-range 
limit) to d,  = 1.38 f 0.02 (short-range limit) with the value for the ‘ant’ d ,  = 1.32 (Stanley 
er al 1984) in between the two. In terms of d ,  this gives 

d ,  = 2 d f -  dG. (13) 
for d = 2: d ,  = 73/24 = 3.04 (long-range limit) and d ,  = 2.75 f 0.04 (short-range limit). 
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Note that the excluded volume effect gets stronger in the short-range limit. For p = 1 
case I get, surprisingly, d , = j  (long-range limit) and d ,=2  (short-range limit). For 
three-dimensional percolation ( df = 2.5) the preliminary results for dG are dG = 1.1 
(long-range) and dG = 1.3 (short-range) ; correspondingly, the crossover for dynamical 
exponents are d, = 3.9, d, = 1.28 (long-range) and d ,  = 3.7, d, = 1.35 (short-range). The 
crossover is not as sharp for d = 3. However, the short-range behaviour still appears 
to be different from the random diffusion on percolation. For dmin in the long-range 
limit I get, combining (13) and (8), dmin= d,-df. Note also that for the long-range 
limit one finds, combining ( 6 ) ,  (3) and (12), d,/df = (1 + l /d , )  for diffusion on percola- 
tion (compare with Havlin er a1 (1984) for transport on branched polymers). One can, 
of course, consider different ways of ti’me rescaling for the ‘butterfly’ model. 

In summary, I suggest the ‘exact’ value d G =  l / v  for the long-range ‘butterfly’ 
model. The growth behaviour is found to be the same for the short-range ‘butterfly’ 
walk and a random walk on a Euclidean lattice, but different on a percolation cluster. 
The crossover is observed in the spectral dimension when the dynamic aspect is 
introduced to the model. Both long- and short-range limits of this growth-limited 
diffusion process are different from a random diffusion on percolation. I suggest a 
scaling relation for the ‘chemical’ dimension d, = df/( df - d,) where dmin = df - d,. 
More numerical work is suggested to check the proposed scaling relations and a study 
of cluster perimeters is proposed for various diffusion processes, e.g. the ‘looking ant’ 
(Seifert and Suessenbach 1984). 

It is a pleasure to thank F Leyvraz for many stimulating discussions and friendly 
support. I also thank S Havlin, R J Rubin, D Stauffer and Y Termonia for critical 
reading of the manuscript. I thank Boston University for warm hospitality. 
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